UNIT I

Chapter 1: Recent Trends in Automobile Industry

1-1 to 1-40

Svi	ı	h		r.
JVΙ	IIa	υu	3	ń

- 1.1 Hybrid cars Manufactures, Types-Micro Hybrid, Mild Hybrid, Full Hybrid, Series hybrid, Parallel Hybrid
- 1.2 E-vehicles Manufacturers, specifications, Types of Batteries, Li-ion batteries, Sodium nickel Chloride Batteries, Sodium Sulphur Batteries, Fuel Cell, Charging - Charging Methods and Modes. Issues with e-vehicles
- 1.3 Safety in Automobile Air bags, Automatic Emergency Braking, Adaptive Cruise Control, Electronic stability programmer, Anti Collision system, Active Passive Integration system.

1.1	Hybrid Cars1-1
1.1.1	Hybrid Car Manufacturers :1-1
1.1.2	Main Parts of Hybrid Vehicle1-2
1.1.3	Classification of Hybrid Cars :1-3
1.1.4	Plug-in Hybrid Electric Vehicle (PHEV)1-4
1.1.5	Hybrid Vehicles and their Specifications : 1-5
1.1.6	Advantages of Hybrid Cars :1-6
1.1.7	Limitations of Hybrid Cars1-6
1.1.8	Functions of Hybrid Cars1-7
1.2	Electric Vehicles1-7
1.2.1	India's : Electric Vehicle1-8
1.2.2	E-Vehicles - Government of India Policy 1-11
1.2.3	Batteries in Electric Vehicles : 1-13
1.2.3.1	Types of Batteries :1-14
1.2.4	Charging in Electric Vehicles 1-17
1.2.4.1	Battery Charging : Methods1-18
1.2.4.2	Battery Charging : Modes1-18
1.2.5	Issues with E-Vehicles1-19
1.3	Safety in Automobiles 1-20
1 2 1	Air Pag 1 21

	LINIT II
•	Multiple Choice Questions1-28
1.3.6	Active Passive Integration System1-27
1.3.5	Anti-Collision system1-25
1.3.4.1	Components of the Electronic Stability Control : .1-25
1.3.4	Electronics Stability Programmer (ESP)1-24
1.3.3	Adaptive Cruise Control (ACC)1-23
1.3.2	Automatic Emergency Brake (AEB)1-22

Chapter 2 : Process Engineering

2-1 to 2-32

Syllabus :

- 2.1 Process Boilers Steam and Condensate loop in process industries,
- 2.2 Introduction to ultra-super critical Boilers.
- 2.3 Hyperbolic cooling towers.
- 2.4 Waste heat recovery-process industry.

2.1	Process Boilers2-1
2.1.1	Various Applications of Process Boilers2-1
2.1.2	Working of Process Boiler2-2
2.1.2	Steam and Condensate Loop2-3
2.2	Introduction to Ultra-super Critical Boilers $2-7$
2.2.1	Super Critical boilers2-7
2.2.2	Ultra Super Critical Boilers2-7
2.2.3	Difference between Supercritical and Ultra Supercritical Boilers
2.3	Hyperbolic Cooling Tower2-8
2.3.1	Components of Hyperbolic Cooling Tower2-9
2.3.2	Types of Hyperbolic Cooling Tower2-9
2.4	Waste Heat Recovery2-10
2.4.1	Waste Heat Boiler (WHB)2-10
2.4.2	Waste Heat Recovery Source and Quality2-11
2.4.3	Advantages of Waste Heat Recovery2-11
2.4.4	Waste Heat Recovery Devices2-11
•	Multiple Choice Questions2-14

UNIT III

Chapter 3: Recent Trends in Manufacturing Industry 3-1 to 3-28

_				
c,	/Ha	hı		
IJ,	ша	ıbι	ı	

- 3.1 Smart Manufacturing Technology : introduction, Elements and applications
- 3.2 Automation: Need, Basic elements of automated systems, automation principles and strategies, Benefits. 3.3 Types of Automation: fixed, programmable, flexible, hard and soft automation.
- 3.4 Industrial Robotics : robot anatomy, robot control systems, end effectors, sensors in robotics, industrial Robot applications.
- 3.5 4-D Printing Technology : Printing Techniques, 3D scanning Technology- Function, Applications.

3.1	Smart Manufacturing Technology3-1
3.1.1	Introduction to Smart Manufacturing3-1
3.1.2	Revolution of Smart Manufacturing3-2
3.1.2.1	First Revolution in Industry3-2
3.1.2.2	Second Revolution in Industry3-2
3.1.2.3	Third Revolution in Industry3-3
3.1.2.4	Industry's Fourth Revolution3-3
3.1.3	Elements of Smart Manufacturing3-3
3.1.4	Applications of Smart Manufacturing Technology3-6
3.2	Automation3-7
3.2.1	Need of Automation3-7
3.2.2	Basic Elements of Automated System3-7
3.2.3	Automation Principles and Strategies3-8
3.2.4	Benefits of Automation3-9
3.2.5	Demerits of Automation3-10
3.3	Types of Automation3-10
3.3.1	Fixed Automation3-10
3.3.2	Programmable Automation3-10
3.3.3	Flexible Automation3-11
3.4	Industrial Robotics

	UNIT IV
•	Multiple Choice Questions3-21
3.5.3	Applications of 3D scanning Technology3-19
3.5.2	3D Scanning Technology3-18
3.5.1	Printing Techniques3-17
3.5	4-D Printing Technology3-17
3.4.5	Industrial Robot Applications3-16
3.4.4	Sensors in Robotics3-14
3.4.3.1	Types of End Effector3-13
3.4.3	End Effectors3-13
3.4.2	Robot Control System3-12
3.4.1	Robot Anatomy3-12

Chapter 4: Energy Audit and Management 4-1 to 4-53

Syllabus:

- 4.1 Standards and labelling standard(HVAC)
- 4.2 Energy Monitoring and Targeting
- 4.3 Energy Management and Audit

	- 9, 9
ł.1	Introduction 4-1
.1.1	Concept of Energy Audit4-2
.1.2	Energy Management4-2
l.2	Standards and Labelling Standard (HVAC) 4-2
.2.1	Standards4-3
.2.2	Labelling4-3
.2.3	Objectives of Standards and Labelling Program 4-3
.2.4	Reasons for Labelling4-3
.2.5	Benefits of Star Labelling4-3
.2.6	Types of Labels4-3
.2.7	Star labeling/Rating4-4
.2.8	Importance of BEE Star Rating Labels4-5
.2.9	Details of the BEE Star Ratings4-5
.2.10	Star Rating4-5
.2.11	Energy Consumption4-6

*	Emerging Trends in	Mechanical	Engineering	(MSBTE)
Y.	0 0		0 0	. ,

Table of Contents

E m	erging Trends in Mechanical Engineering (MSBTE)
4.2.12	Benefits of the Energy Label for Consumers4-6
4.2.13	Types of Energy Labels4-6
4.2.14	Guidelines for Understanding Star labels4-7
4.2.15	Indian Seasonal Energy Efficiency Ratio (ISEER) 4-8
4.2.16	Savings and Number of Stars4-8
4.3	Energy Monitoring and Targeting4-9
4.3.1	Elements of Monitoring and Targeting System4-11
4.3.2	Importance of Monitoring and Targeting 4-11
4.3.3	Analysis of Data and Information4-12
4.3.4	Pie Chart on Energy Consumption4-13
4.3.5	Relating Energy Consumption and Production4-13
4.4	Energy Management and Audit4-22
4.4.1	Energy Audit4-22
4.4.2	Objectives of Energy Audit4-22
4.4.3	Need for Energy Audit4-22
4.4.4	Energy Audit Steps4-23
4.4.5	Types of Energy Audits4-24
4.4.5.1	Preliminary Energy Audit or Walk-through (PEA)4-24
4.4.5.2	Targeted Energy Audits 4-26
4.4.5.3	Detailed Energy Audit (DEA)4-26
4.4.6	Phases of Detailed Energy Audit4-27
4.4.7	Ten Steps Methodology for Detailed Energy Audit4-28
4.4.8	Case study of Energy Audit for Institution/University4-29
4.4.9	Energy Conservation Measures : Classification 4-33
4.4.10	Reporting Format for Energy Audits4-34
4.4.11	Benchmarking Energy Performance Permits 4-35

Plant energy performance (PEP)......4-36

Production factor4-36

4.4.12 4.4.13

	UNIT V	
•	Multiple Choice Questions	4-42
4.4.15.1	Case Study : Example on Fuel Substitution4-3	
4.4.15	Fuel and Energy Substitution	.4-37
4.4.14	Reference Year Equivalent Energy Use	.4-36

Chapter 5: Agricultural Equipment and **Post Harvest Technologies**

5-1 to 5-20

C.,	labus	

- 5.1 Tillers, Sowing and Planting equipment, Weeding Machines, Spraying Machines, Harvesting, Post harvesting Machineries
- 5.2 Elements of Cold chain
- 5.3 National Cooling Action Plan (NCAP)

5.1	Introduction 5-1
5.1.1	Tillers5-2
5.1.2	Sowing and Planting Equipment5-3
5.1.3	Weeding Machines5-5
5.1.4	Spraying Machines 5-6
5.1.5	Harvesting and Post Harvesting Machineries 5-8
5.1.5.1	Harvesting 5-8
5.1.5.2	Harvesting and Threshing Methods5-8
5.1.5.3	Types of Thresher5-9
5.1.5.4	Tractors in Agriculture5-12
5.2	Elements of Cold Chain5-13
5.2.1	The Cold Chain Process5-13
5.2.2	Main elements in the cold chain5-13
5.2.3	Examples of Industries that use Cold Chain5-14
5.3	National Cooling Action Plan (NCAP)5-14
5.3.1	Rise in requirement for Cooling in India5-15
5.3.2	India Cooling Action Plan (ICAP)5-15
•	Multiple Choice Questions5-16